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THERMAL INSTABILITY OF HARTMANN FLOW IN 
THE THERMAL ENTRANCE REGION OF HORIZONTAL 
PARALLEL-PLATE CHANNELS HEATED FROM BELOW 
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(Rewired 30 October 1975 and in recised form 1 March 1976) 

Abstract-The onset of instability in the form of longitudinal vortices for fully developed Hartmann 
laminar flow in the thermal entrance region of horizontal parallel-plate channels is investigated by a 
numerical method for the case with a uniform vertical magnetic field and heating from below. Numerical 
results are obtained for Pr = 0.7. 0.01. Pe = 10 100. ZG, Er = 0. - 1 and HA = 0. 2, 6. 10. The effects of 
Prandtl. Peclet (axial conduction), Brinkman (viscous dissipation and Joule heating) and Hartmann 

numbers on thermal instability of magneto-hydrodynamic flow are studied 

a, 
B, 

Br. 
b. 

C., Qz, 

CF. 
D, 
E. 
En. 0,. 
e, 

Gr, 
g, 
Ha. 
J. 
J 0. 
j. 

K, 
k, 
L. 

1. 
M. 

P, pb. 

PC, 

Pr. 

P. 

Ra, 

Re. 

Rm. 

NOMENCLATURE 

dimensionless wave number; 

magnetic field induction vector, 

(0,O. B,); 
Brinkman number. pf Ui/(k&); 

dimensionless perturbation vector of 

impressed magnetic field, (b,, b,. bZ); 

coefficients in the series expansion of 0,; 
specific heat at constant pressure: 

d/d=; 
electric field intensity vector, (0, Eo. 0); 

even and odd eigenfunctions; 
dimensionless perturbation vector of 

electric field, (e,, ey, e,); 
Grashof number, gp(AT)13/v’; 

gravitational acceleration; 
Hartmann number, (u/pr)“‘Bo I: 

electric current density vector, (0, Jy, 0). 

aBo V,,,J: 
dimensionless perturbation vector of J, 

(jX.j,.,ir); 
external loading parameter, Eo/(Bo U,,,); 

thermal conductivity; 
a distance between two infinite 
horizontal flat plates; 

L/2; 
number of divisions in y direction; 

fluid pressure (Pbf P’) and pressure for 
basic flow; 
Peclet number. PrRe: 

Prandtl number. cppf/k; 

dimensionless perturbation pressure. 

p’/(pU~~: 
Rayleigh number, g/I(AT13/va; 
Reynolds number, pU,,,l/pf; 
magnetic Reynolds number. 

u, I/( l/j& u) ; 
T. T/v To. fluid temperature (z + B’), fluid 

temperature of basic flow and uniform 
entrance temperature; 

TI, T2, T,, uniform but different lower and upper 
plate temperatures, and (TI + T2)/2; 

ub, ki,, Mb axial, mean and dimensionless velocities 

of basic flow: 
dimensionless perturbation velocity 

components; 
u. l’, iv. 

v, vb. v’, 

x. Y. z. 

x. ?‘. 2, 
x. z. 
Z’, I”, 

Greek symbols 

velocity vector (vb + V). basic velocity 

vector (ub, 0.0) and perturbation 
velocity vector (U’, V. IV); 

Cartesian coordinates with origin at 

lower plate; 
dimensionless coordinates; 
transformed coordinates, x/Pe, z = z; 

dimensional and dimensionless 
transverse coordinates with origin at 

center of channel. 

thermal diffusivity; 
coefficient of thermal expansion: 
even and odd eigenvalues; 
dimensionless perturbation, basic flow 

and entrance temperatures; 
characteristic temperature difference 

(Tz-T,)=(T2-TI)/2,and 

dimensionless fluid temperatures 
defined by equation (7); 
magnetic permeability and viscosity 
of fluid; 
kinematic viscosity; 
fluid density; 
electric conductivity; 
viscous dissipation function; 
dimensionless basic velocity and 

temperature profiles, ub/& and 

(Th- &)/AT; 
dimensionless stream function; 
(TI-T,)= -20,. 

Superscripts and subscripts 

perturbation quantity; 

+, amplitude of disturbance quantity; 
* transformed perturbation variable or 

critical value; 

b, basic quantity in unperturbed state. 
1343 

HMT Vol. 19. No. 12-A 



1344 R \Y-SHIN<; Wr 

1. INTRODUCTIOK 

IN RECENT years. the problem of the laminar forced 
convection for fully developed MHD laminar Row in 
the thermal entrance region of a parallel-plate channel 
has been studied by many investigators for the thermal 
boundary conditions of both uniform wall heat flux 
and constant wall temperature. The literature on the 
subject is well reviewed in [i, 21 and further recent 
works are quoted in [3]. It is known that when a 
horizontai fluid layer is subjected to an adverse tem- 
perature gradient, a top-heavy situation results and the 
system is potentially unstable due to the buoyancy 
forces. With a superposed fully developed laminar flow 
between two horizontal flat plates. heated from below. 
the onset of the secondary flow in the form of longi- 
tudinal vortices [4-81 is characterized by a critical 
Rayleigh number. With the appearance of the vortex 
rolls. the fiow takes on a three-dimensional character 
and the heat transfer rate is expected to increase with 
the Rayleigh number. Thus, it is of practical interest to 
determine the conditions for the onset of secondary 
flow. 

The effects of a verticai, uniform magnetic field on 
the thermal instability of horizontal stationary fluid 
layers were studied theoretically by Thompson [9] 
and Chandrasekhar [lo. 111 and experimentally by 
Nakagawa [12-151. The thermal instability of a 
magnetofluid in a vertical rectangular channel heated 
from below was investigated by Yu [16] quoting the 
related references. The thermal instability of a 
Hartmann flow in the thermal entrance region of a 
horizontal parallel-plate channel with heating from 
below does not appear to have been studied in the 
past. The purpose of this study is to determine the 
conditions marking the onset of longitudinal vortex 
rolls in the said passage where the two plates arc 
maintained at uniform but different surface tempera- 
tures. The present study can be regarded as a first step 
toward investigating the change of heat-transfer rate 
due to the thermal instability for a Hartmann flow 
and represents an extension of the thermal instability 
problem for a confined horizontal fluid layer studied 
by Thompson [9] and Chandrasekhar [lo. 1 I] to the 
case with a superposed fully developed laminar flow. 
The basic velocity and temperature fields in the thermal 
entrance region of the channel required for the present 
thermal instability analysis are reported in [3]. For the 
basic Row and temperature fields, the free convection 
effect is neglected and the problem is to find the con- 
dition at which free convection starts to affect the 
Hartmann flow. 

2. FORMULATION OF THE THERMAL 
INSTABILITY PROBLEM 

2.1. Basic ,flow and temperature,fields 
Consideration is given to a Hartmann flow between 

two horizontal flat plates under the action of a homo- 
geneous transverse magnetic field B0 and heated from 
below. The basic equations of motion. of Maxwell, and 
of energy appropriate to the thermal entrance region 

and K. c. CHF NO 

heat-transfer problem [3] are: 

V.Vh= 0 (1) 

(vh.V)Vh= -h’b+vV2V~+:)J~B (2) 
I’ 

V.B=O, VXB=(*,J, V.E=O, 

VXE = 0, J = a(E+V~XB) 
(3) 

~JC~(v~.v)~= b9”Tb:dt)iJ.J) 14) 

0 0.30 060 0.90 
z 

FIG. 1. Disturbance profiles for perturbation amplitudes w* 
and 0* at Ha = 0, 10 for Pr = 0.7. Pe = 10, Br = 0, -1 

and x = 10. 

where Vb = (U,, 0, 0), J = 10, Jy = a& - U&), 01, 
E = (0, Eo, 0). B = (0. 0, Bo). Q, = ps(dU,/dZ’)’ and 
V2 = ?‘/?X2 f?2/?Z’2 in energy equation (4) and the 
coordinate system is defined in Fig. 1. The boundary 
conditions are: 

U,(O, rtl) = 0, r,co, T) = To. 

7gx. -1) = T,, Th(X, I) = T2. 
( 

Introducing the following dimensionless variables and 
physical parameters, 

where 

J’ 

1 
cl, = Un dZ/(Zi), T, = ( T, + T2)/2. 

n,: Tz - T, = ( T2 - T, )/2, 

the well known Hartmann solution [17] for equation 
(2) and the solution [3] of energy equation (4) con- 
sidering both the viscous dissipation and axial con- 
duction effects can be written as 

uh = Ha(cosh Ha -cash ~a~‘)j(~a cash Ha-sinh Ha) 

= C~~cosh~~-cosh~u~‘) (6) 

t)h = B#‘) f&(X. :‘) (7) 
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where and noting that 

0, = z’s Br[(C+/4)(cosh 2Ha-cash 2Haz’) 

+2C, C*(cosh Ha-cash Haz)+ (Cf Ha2/2)(1 -i”)], 

Cz = K - Ct cod Ha. 

IJ, = IJ,,,& Tb- T2 = (ATM,,, 

Jo = rrBi, U,,, J = aBo iJ,,,( K - 4”). 

AT=(T,-Tz)= -28,. 

0, = t C,E,Wexp(-/3,x)+ 5 D,O,(z’)exp(-)t,x). 
II=; ?I=1 

The details of the infinite series solution for B are 
given in [3] and the expression for 0 is given here for 
reference purpose only. At this point. it is convenient 
to shift the coordinate origin to the bottom plate for 
the instability problem and one obtains z = &z’+ 1) 
and the developing temperature profile #+$ = i( 1 - f?i,). 

the perturbation equations become 

2.2. Perturbation equations 
In order to study the thermal instability concerned 

with the onset of secondary flow in the form of longi- 
tudinal vortices for the horizontal Hartmann flow 
heated from below. the perturbation quantities are 
superimposed on the basic quantities as 

V = V,+v’= [IJ,(Z)+IJ’, I/“, W], T= %-I-CT 

P = &-tP’, E = Er,+er = (e;, E0+e;., ei), 

s=Bbi.b’=(b:,hb,BO+b:f 
(8) 

J = Jb+j’ = (j;, J0 +_&, j:). 

The above perturbation quantities are considered to 
be in the steady state and are of a function of space 
variables X. Y and Z only. After applying the linear 
stability theory and using Boussinesq approximation. 

j,= Xe,+v, j,.= Key-u-&,hz. jz = Ke,+&,b, (21) 

V.e=O(a), VXe=Ofb), V.b=O(c), 

VXb = 2Rmj (d). 
(22) 

Here it is understood that the operators V2 and V are 
dimensionless. 

(9) 

(IO) 

(11) 

(12) 

(13) 

(14) 

(15) 

Introducing the following nondimensional quantities 
and physical parameters, 

(X, Y, 2) = .I&, L’, 2). (U’, v, W) = I_&&, 0. w), 

0’ = (A~)Q, p’ = (~~~)p, (h:, b;, b:) = B,(b,, b,, b,), 

(eL el, 6%) = E0(e,, e,, e,), li:.j;,jl) = dS0 I.ML j,&X 

After eliminating u, B, p and using continuity equa- 
tion. the three momentum equations can be combined 
into a single equation as 

V’V”w-4Ha2$-2Re &~V%v-~$$ 
i I 

= -~V~4+4Ha2/J(V:h,+~) 

--2$55$,,~ (23) 1 
From equations (20) (23) and noting further that for 

vortex-type instabiiity &?x = 0, one has 7 unknowns 
u, w, 0, b,, b,, j, and e,. Consequently, one needs 
additionally one momentum equation, Ohm’s law, two 
magnetic induction equations and one electric fiefd 
equation as follows. 

= 2Rew $2 - 4Ha2[(K -#,)b, +j,l (24) 

j, = Ke,v-u-c$,bz (251 

v=bx-=#tt$ = -ZRm[;+$$,] (26) 

V2b=-2~rn~“~ = -2Rrng 

v%?, = 0. 

(27) 

(28) 
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The boundary conditions are 

jr = 0 at 2 = 0. 1 (non-conducting walls). (29) 

For the disturbances in the form of stationary longi- 
tudinal vortices. one may assume the disturbance form 
[7] .f‘ = .f“(=)e’“’ for the disturbance quantities. The 
assumption of taking the perturbation quantities to be 
“in the steady state” is consistent with the previous 
investigations [7,8. 193. The set of equations then 
becomes : 

= 2Red!!& 
dz 

-4Ha2[(K-2$,)b:] (31) 

(D” -L&h+ = -2RmDwf (35) 

(D2 -Q’)r: = 0 (34) 

where D = d/d:. 5” = D2 - uz and V f = - ~1’. A study 
of the electromagnetic boundary conditions is now in 
order. When the magnetic Reynolds number Rm is very 
small, an order of magnitude analysis reveals that the 
R.H.S. of equations (34) and (35) can be neglected. 
From Maxwell’s equations and equations (34), (36) 
and (29) it can be shown that e: = e’ = e” = hz = 0 
for the whole domain and the details are given in [18]. 
It is convenient to introduce the transformations 
.w=Pf?x.z=z,rr+ = Rd. wf = w*, 0’ = Pe@*,j,? = 
R+$, bt = Rmh) and one obtains 

[(D’--Q~)~ -4Hu*D’]w* = 4Raa2B* (37) 

[(D” - a2) - 4Na2] II* 

d& = 2 - w* - 
Rm 

d; 
4Ha’(K- 2#,) - bf 

Re 1 
(38) 

1 
(39) 

j;= --II*- #$fbf . 
i I 

Since Rm,/Re is very small, the terms involving Rm/Re 
in equations (38) and (40) can be neglected [ 191 entirely 
in comparison with the other terms. Thus, one sees 
that the present eigenvalue problem can be solved 

independently of the boundary conditions on the 
magnetic field. The physical parameters are seen to be 
Pr, Pe, Br, Hu and Ra. The boundary conditions are 

ii* = II’* = &v* = (I* = 0 at 2 = 0. 1. (41) 

It is instructive to identify the physical meaning of 
each term in the perturbation equations and regard 
the terms on the R.H.S. of each equation as the source 
or forcing terms. Qne also notes that the terms in- 
volving Ha2 are preceded by a negative sign suggesting 
that the transverse magnetic field has a stabilizing 
effect on the instability. Without the effects of a mag- 
netic field, Joule heating and viscous dissipation. the 
present thermal instability problem reduces to that 
studied in [7]. For given values of Pr. Pe, Br and Nu, 
one is interested in determining the minimum critical 
Rayleigh number and the corresponding wave number 
for the onset of instability as stationary longitudinal 
vortices through the solution of equations (37)~(41). 

3. NUMERICAL SOLUTION 

In view of the expressions for the basic veiocity and 
temperature profiles, an analytical solution of the 
characteristic value problem is apparently not practical. 
A finite-difference method using an iterative technique 
is used for the simultaneous solution of the disturbance 
equations [7]” Using the higher order finite-difference 
scheme due to Thomas [20], equation (37) and its 
boundary conditions may be transformed into a qui- 
diagonal system of matrix for a set of algebraic equa- 
tions and two tridiagonal systems result from equations 
(38) and (39) and their boundary conditions. Noting 
that for given values of PI. PP. Br and Ha, the basic 
profiles &, and & are known. the solution of a coupled 
set of equations (37)-(41) can be carried out by using 
an iterative procedure. It is found that only a few 
iterations are required to determine critical Ra values 
to five signi~cant figures. The complete details of the 
numerical solution as well as the method of finding the 
minimum critical Ra as a function of wave number a 
are given in [ 181. 

4. RESULTS AND DISCUSSION 

Before presenting the numerical results. it is well to 
note that the basic fully-developed velocity profiie 4, 
depends on Ha only and the basic temperature profile 
#” is a function of the parameters Pe, Br and Wn and 
is independent of Pr. The typical profiles for 4,) are 
shown in L3J. In the perturbation equations (37)-(39). 
only two prescribed parameters Pt and Hu appear. 
The numerical results will be presented in such a way 
to illustrate the effects of the aforementioned physical 
parameters on thermal instability. 

The effects of the Hartmann number on disturbance 
profiles M’*, U* and II* are shown in Figs. I and 2, 
respectively, for fully developed condition (x = 10) with 
Pr = 0.7, l’e = 10 and Br = 0, - 1. From the normal 
modes of the disturbances and the definition of the 
stream function r = dY/&, u’ = -(7Y,,+. one obtains 
Y = (iw+/u)e’“r and one may compute the stream 
function Y by noting that physical meaning is attached 
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1.0 

0.6 

0.2 

u* 
-0.2 

--- Bp-, 

- Br=O 

-0.6 

-1.0 
a 0.3 0.6 0.9 1.0 

z 

FIG. 2. Disturbance profiles for perturbation amplitudes U* 
at Ha = 0. 2. 6. 10 for Pr = 0.7. Pe = 10. Br = 0, - 1 and 

x = 10. 

’ Pr=O,7,~~lO,Br=O,Ho=lO, x ~10 ’ Pr=O.~%IO.Br*-l,Ha*IO,x*IO 

0.1 -0.1 0.1 -0.1 
0 . 0 

x=zn/a !.=zn/a 

FIG. 3. Streamline pattern at onset ofinstability for Pr = 0.7, 
Pe = 10. Ha = 10. x = 10. Br = 0 and - 1. 

only to the real part. The results are shown in Fig. 3. 
In Figs. l-3, the magnitude of the maximum disturb- 
ance quantity is taken to be one. The neutral stability 

curves for Pe = 10, Pr = 0.01 and 0.7 are shown in 
Figs. 4 and 5, respectively, where one may see the effects 
of Hartmann and Brinkman numbers clearly. 

FIG. 4. Neutral stability curves for Pr = 0.01. 
Br = 0. - 1 and Ha = 0.2.6, 10. 

15c I- 

13c ,- 

IlO 

90 
7 
0 

;: 
a 70 

50 

30 

IO 

Pr=O.? 

Pe=lO 

x =I0 

- Br=O 

--- Br=-, 

L 6 0’ 
N___/. 

& --_--- --'0 
I 1 I 1 

2 3 4 5 

a 
6 

FIG. 5. Neutral stability curves for Pr = 0.7. 
Br = 0. - 1 and Ha = 0.2,6. 10. 

The effect of Peclet number on critical Rayleigh 
numbers Ra* along the axial coordinate x is shown 
in Figs. 6-9 with Pr = 0.01. 0.7 and Br = 0, - 1 for 

Ha = 0, 2. 6 and 10. In Fig. 6 (Ha = 0) with Pr = 0.7. 
the critical Ra* is seen to decrease monotonically with 

x until an asymptotic value is approached. On the 
other hand, with Pr = 0.01 and Br = - 1. a local 
maximum value for Ra* exists at a certain axial location 
before reaching the asymptotic value. Furthermore, 
the region near the thermal entrance (x = 0) is seen to 
be more unstable than the region near the fully 
developed region (x 2 10) for Pr = 0.01. It is found that 
the curve for Pe = 100 can be regarded as Pe = x 

practically. The merging of the two curves for Pe = 10 
and 100 at some axial position signifies the dis- 
appearance of the axial conduction effect. With Ha = 

Br = 0, the asymptotic value of Ra* = 213.47 which is 
independent of Prandtl number agrees with the well- 
known value of 1708/8 for the Benard problem. This 

can be explained from the perturbation equations. For 

fully developed flow. ?4C,/?x = 0 in equation (39) and 

tia=O 
- Br=O 
--- ar=-, 

FIG. 6. Critical Rayleigh number Ru* in thermal entrance 
region for Pr = 0.01. 0.7 and Pe = 10, 100. a with Ha = 0. 

Br=O. -1. 
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FIG. 7. Critical Rayleigh number Ra* in thermal entrance 
region for Pr = 0.01. 0.7 and Pr = 10. 100, ~8 with Htr = 2. 

Br=Oand -1. 

FIG. 8. Critical Rayleigh number Ru* in thermal entrance 
region for Pr = 0.01. 0.7 and Pe = 10. 100. m with Ha = 6. 

Br = 0 and - I 

x 

FIG. 9. Critical Rayleigh number Ru* in thermal entrance 
region for Pr = 0.01.0.7 and Pr = IO. 100. x with Ha = 10. 

Br=Oand -1. 

able. The effect of the Hartmann number on the 
asymptotic value of Ra* is of interest since for the fully 

developed flow, one has @,,/?x = 0 and the pertur- 
bation equations (37) and (39) become identical with 
those of Chandrasekhar [IO] when Br = 0. It is found 

that the present asymptotic results with Br = 0 agree 
with those of [lo]. From Figs. 6-9, it is seen that with 

the increase of Hartmann number, the effect of Brink- 
man number on the asymptotic value of Ra* becomes 
less appreciable. Figures 10 and 11 show clearly the 
effects of Ha and Pr on the distribution of Ra* along 

the axial direction x for given values of Pr and Br. The 
present investigation shows that the magnetic Geld has 

a stabilizing effect and the decreasing Prandtl number 

Pe=loo, Br=O 
-Pr=o.7 
--- Pr=O.M 

FIG. 10. Hartmann number effect on critical Ra* in thermal 
entrance region for Pe = 100. Br = 0 and Pr = O.Oi. 0.7. 

Pe=lOO, Bra-1 I 

!0-3 to-2 :“-I 100 10’ 

FIG. Il. Hartmann number etfect on critical Ku* in thermal 
entrance region for PC = 100. Br = - 1 and Pr = 0.01. 0.7. 

with Ha = Br = 0. equations (37) and (39) become 
identical with those of the Benard problem. 

It is difficult to explain the reasons for the occurrence 
of the local maximum for Ra* in the thermal entrance 
region as noted earlier. Considering the case with 
Ha = 0, it appears that the cause for the phenomenon 
is due to the combined effect of the convective term 
(u~~~~)~~,/~x and the term involving Br on the R.H.S. 
of the perturbation equation (39). Noting that the basic 
profiles 4,(z) and 4,(x. Z) are independent of Pr. one 
may conclude that the relative magnitude of Pr and 
Br also plays some role leading to the occurrence of 
the phenomenon. Figures 7-9 reveal that as the value 
of Ha increases. the phenomenon becomes less appreci- 

Pe*tO, Pr~O.01 
- Err=0 
--- &=-I 

---- 

FIG. 12. Hartmann number ett‘ect on critical U* in thermal 
entrance region for Pr = 0.01. Pr, = 10 and Br = 0. - 1. 
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has adestabilizing effect in the thermal entrance region. 

For reference, the distributions of the wavenumbers a* 

are also shown in Fig. 12. 

5. CONCLUDING REMARKS 

1. The analysis [lo] on thermal instability of a 
horizontal fluid layer confined between two rigid plates 
subjected to a vertical uniform magnetic field is ex- 
tended to the case with main flow (Hartmann flow). 
The present analysis includes the axial conduction, 
viscous dissipation and Joule heating effects. 

2. The numerical results are obtained for Pr = 0.7 

(air), 0.01 (liquid metal), Pe = 10. 100, 00, Br = 0, - 1. 
and Ha = 0, 2, 6, 10 with K = 1 and 09 = 1 only. 

The case with K = 1 signifies the open circuit condition 
and B0 = 1 means To = TZ (entrance temperature is 

equal to upper plate temperature). At Br = - 1, the 
viscous dissipation effect may be considered to be 

appreciable. It is found that the axial conduction and 

the magnetic field have a stabilizing effect and the effect 
of Brinkman number appears to be dependent upon 
other parameters such as Ha and Pe. It is observed 

that the combined effect of Prandtl and Brinkman 
numbers in the perturbation equation (39) may lead to 

a locally stabilizing effect in some region of the channel 
before the fully-developed region. 

3. For high Prandtl number fluid, the flow is more 
stable in the thermal entrance region than in the fully- 

developed region. but the opposite is true for small 
Prandtl number fluid. However, the Brinkman number 
has a destabilizing effect in the fully-developed region. 
When Pr is small. the critical Rayleigh number does 

not change appreciably throughout the whole entrance 
length at say Ha = 10. 

4. The accuracy and convergence of the numerical 
solution are checked by comparing the present numeri- 
cal results with those reported in the literature for the 

limiting cases [7. lo]. 
5. The present instability results are useful in predict- 

ing the onset of longitudinal vortex rolls in wide 

horizontal rectangular channels and the complete 
numerical results for Ra* and a* are listed in [18]. 

6. As noted in [3], for low Peclet number flow regime 
with viscous dissipation effects, the entrance condition 
of uniform fluid temperature at x = 0 must be regarded 

as an approximate one. Consequently, numerical calcu- 
lation is not made for Pe < 10. 
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INSTABILITE THERMIQUE DE L’ECOULEMENT DE HARTMANN DANS LA 
REGION D’ETABLISSEMENT DU REGIME THERMIQUE EN CANAL HORIZONTAL 

LIMITE PAR DES PLAQUES PLANES ET CHAUFFE PAR LE DESSOUS 

Resume-Le dtclenchement de I’instabihte sous forme de tourbillons longitudinaux pour l’ecoulement 
laminaire ttabli de Hartmann dans la region d’etabhssement du regime thermique en canal horizontal 
limit& par des plaques planes est ttudit a l’aide d’une methode numerique dans le cas d’un champ 
magnttique vertical uniforme et d’un chauffage par le dessous. Les resultats numeriques sont obtenus 
pour Pr = 0.7; 0,Ol; Pe = 10; 100; cc ; Br = 0; - 1; et Ha = 0,2;6,10. On ttudie l’influence des nombres 
de Prandtl. P&let (conduction axiale), Brinkman (dissipation visqueuse et effet Joule) et Hartmann sur 

l’instabilite thermique de l’ecoulement magnetohydrodynamique. 



1350 RAY-SHING Wu and K.C. CHENG 

THERMISCHE INSTABILITAT DER HARTMANN-STROMUNG 
IM THERMISCHEN EINLAUFBEREICH VON WAAGERECHTEN, VON 

UNTEN BEHEIZTEN KANALEN AUS PARALLELEN PLATTEN 

Zusammenfassung-Mit Hilfe einer numerischen Methode wird das Einsetzen der Instabilitat in Form 
von Langswirbein bei voll ausgebildeter Hartmann-Laminarstriimung im thermischen Einlaufbereich 
eines waagerechten Kanals aus parallelen Platten untersucht fur den Fall eines einheitlichen senkrechten 
Magnetfeldes und bei Beheizung von unten. Numerische Ergebnisse wurden erhalten fur Pr = 0,7: 
0.01 und Pe = 10; 100: x. sowie fur Br = 0; - 1 und Ha = 0; 2: 6; 10. Die Einfltisse der Prandtl-, Peclet- 
(Langsleitung), Brinkman- (viskose Dissipation und Joulesche Heizung) und der HartmannZahl auf die 

thermische Instabilitlt einer magnetohydrodynamischen Stromung werden untersucht. 

TEfUlOBAll HEYCTOtiYMBOCTb TE’4EHMIl I-APTMAHA B HAHA_JIbHOM 
YYACTKE rOPM30HTAJIbHblX fIJIOCKOIlAPAJI.BE_JIbHblX HArPEBAEMblX 

CHM3Y KAHAJIOB 

AE!HOT~W-C nOMOubm WCneHHOrO MeTOna HCCneDyeTCN B03HHKHOBeHHe HeyCTOfiWBOCTH B 

BHge npOnOJlbHblX BHXpeA npH IlOflHOCTbkO pa3BWTOM JlaMHHapHOM TeYeHWH FapTMaHa B Harpe- 

BaeMOM HaYaJlbHOM ,'VaCTKe rOpU30HTtiJIbHbIX nnOCKOnapaflneJ,bHbIX KaHanOB npk, nOCTORHHOM 

BepTHKanbHOMMWHHTHOM nOnew HarpeBeCHHJy. ,-,OJ,yW2HbI qHC,leHHble pe3y,lbTaTblfln,l f-?= 0,7; 
0,Ol; Pe = 10,000, a ; Br = 0, - 1 H Ha == 0, 2, 6, 10. Msy~aercjl anuamre rucen npaHnTJUI, FIeKne 

(OCeBaX npOBOLWMOCTb). 6pHHKMaHa (BR3KBII LlHCCWtIaLlWR II HarpeLi ~IKOyJleBblM TenJlOM) II rapT- 

MaHaHaTennoByio HeycToRrwBocTb MarHktTormponkiHakwiecKoro noToKa. 


